What is EULPR?
EULPR is a computer-vision model architecture purpose-built for detecting, reading, and recognizing European license plates. It is optimized for speed and accuracy across diverse EU plate formats.
Key Features
- Anchor-free plate localization
- Multi-country character recognition
- Optimized convolutional blocks
- Real-time inference on edge devices
Use Cases
EULPR is designed to be used in a variety of applications, including:
- Traffic monitoring systems
- Vehicle registration and identification
- Law enforcement and security
- Automated toll collection
- Vehicle access control
Install Required Packages
pip install ultralytics easyocr opencv-python pillow torch torchvision huggingface_hub
Usage Example
import cv2
import numpy as np
from ultralytics import YOLO
import easyocr
from PIL import Image
from huggingface_hub import hf_hub_download
import warnings
# Suppress warnings
warnings.filterwarnings('ignore')
# Download models from HuggingFace
print("Downloading model from HuggingFace...")
model_path = hf_hub_download(repo_id="0xnu/european-license-plate-recognition", filename="model.onnx")
config_path = hf_hub_download(repo_id="0xnu/european-license-plate-recognition", filename="config.json")
# Load models with explicit task specification
yolo_model = YOLO(model_path, task='detect')
ocr_reader = easyocr.Reader(['en', 'de', 'fr', 'es', 'it', 'nl'], gpu=False, verbose=False)
# Process image
def recognize_license_plate(image_path):
# Load image
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Detect license plates
results = yolo_model(image_rgb, conf=0.5, verbose=False)
plates = []
for result in results:
boxes = result.boxes
if boxes is not None:
for box in boxes:
# Get coordinates
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy()
# Crop plate
plate_crop = image_rgb[int(y1):int(y2), int(x1):int(x2)]
# Extract text
ocr_results = ocr_reader.readtext(plate_crop)
if ocr_results:
text = ocr_results[0][1]
confidence = float(ocr_results[0][2]) # Convert to native Python float
plates.append({'text': text, 'confidence': confidence})
return plates
# Usage Example
results = recognize_license_plate('sample_car_with_license.jpeg')
print(results)
Find EULPR Datasets
Discover curated EU license-plate datasets on Hugging Faceโready for immediate training or fine-tuning.
EULPR DatasetsContact
Custom implementation and support are available. Contact me at f@finbarrs.eu for more information.